UNITED STATES PATENT AND TRADEMARK OFFICE

Patent Public Advisory Committee Quarterly Meeting

A Day in the Life of a Patent Examiner: Searching

Jessica Manno Supervisory Patent Examiner AU 2828

How does an application get to an Examiner?

- Patent applications are given a classification based on the subject matter of the application and assigned to the proper Technology Center based on this classification.
- Each Technology Center is an organization with various art units within a broad area of mechanical, electrical, chemical or design.
 Each is managed by one or more directors.

1600 – Biotechnology and Organic Chemistry

1700 - Chemical and Materials Engineering

2100 - Computer Architecture and Software

2400 – Network, Multiplexing, Cable, Security

2600 – Communications

2800 - Semiconductors/Memory, Optics/Photocopying, Electrical Circuits &

Systems and Printing/Measuring & Testing

2900 - **Design**

3600 – Transportation, Construction, Agriculture, Electronic Commerce and

National Security

3700 – Mechanical Engineering, Manufacturing and Medical Devices/Processes

What does an Examiner do with the application?

- Reads and understands the invention
- Determines whether the application is adequate to define the boundaries of the claimed invention
- Determines the scope of the claims
- Searches existing technology for claimed invention
- Determines patentability of claimed invention
- Provides a response, called an Office Action, that notifies applicant of the examiner's patentability determination

What electronic tools does an examiner use?

- Docket and Application Viewer (DAV)
 - View docket and applications
- Search Tools (EAST/WEST, other electronic databases)
 - Search for relevant prior art
- Office Action Correspondence Subsystem (OACS)/Official Correspondence (OC)
 - Write up outgoing correspondence to be sent to applicants/applicant's representatives

How are search strategies developed?

- Claim interpretation
 - Read and understand the claimed invention
 - Determine the scope of the claimed invention
- Consultation with other examiners
- Review of the cited prior art
 - Information disclosure statements, 3rd party submissions
- Review of patent family documents (foreign or domestic)

Why do Examiners search?

- Facilitate claim interpretation
- Determine the state of the art
- Identify relevant prior art
- Determine patentability

Where do Examiners search?

- US and International Patent Literature databases
- Electronic Searching (e.g., publications, web sites)
- Anywhere they might find the information they need with evidence of the date of publication or availability

Patent Public Advisory Committee Quarterly Meeting

Demonstration: USPTO Search Tools

Kevin Parendo Primary Patent Examiner AU 2819

Docket and Application Viewer (DAV)

Docket and Application Viewer (DAV)

What did the applicant disclose in the drawings?

Retrofitted lamp device (Fig. 3) having LED-based illumination device 100 (Figs. 6 or 9) therein

What did the applicant claim?

Claim 1. An LED based illumination device comprising: <u>a plurality of LEDs</u> mounted to an LED mounting board; <u>a first transmissive plate</u> disposed above the plurality of LEDs, the first transmissive plate includes a first amount of <u>a first wavelength converting material</u> configured to change a wavelength of an amount of light emitted by the plurality of LEDs; and a <u>base reflector structure</u> coupled to the LED mounting board between at least two of the plurality of LEDs and extending to the first transmissive plate over a contact area.

- A plurality of LEDs
- A first transmissive plate
- A first wavelength converting material
- A base reflector structure

What are some of the tools used for Search?

- Applicant submitted prior art
- Review of International Search reports (ISR) and Written Opinions for PCT 371 applications
- Review of patent family documents (e.g., domestic, IP5, Cooperative Patent Classification (CPC) patent family)
- Review of related US patent applications
- Patents and patent-related literature (EAST/WEST)
- Non-Patent Literature (NPL) searches
- Chemical structure searches

Search Tool: Live EAST Demo

Inventor and Assignee Searches

Inventor and Assignee Searches

Inventor and Assignee Searches

Browser Window

uspto

Browser Window

Browser Window

Reviewing IDS Documents

Text Searching Claim Language

Text Searching Claim Language (More Broadly)

Text Search – Concept 1 Plural mounted LEDs

Text Search – Concept 2

Wavelength conversion material on Transmissive Plate

Text Search – Concept 3

Reflector between LEDs

Text Search - Combining Concepts 1-3

First Reference

Second Reference

Second Reference

"Forward Searching"

Classification – Collecting Subgroups (Concepts)

Classification – Search Combinations of Concepts

Third Reference

uspto

Fourth Reference

uspto

Fourth Reference

Fourth Reference

Additional Search Tools

- Online databases (e.g., IP.com, IEEE)
- Internet search engines (e.g., Google, Bing)
- Foreign databases (e.g., Espacenet, WIPO)
- Scientific and Technical Information Center (STIC)
 - Electronic Information Centers which support Technology Centers
 - Technology specific search assistance
- Search Strategy Experts (SSE)
 - Search training and assistance

What did the applicant claim?

Claim 2*. A method of testing an LED based illumination device comprising the steps of: measuring the color temperature of a plurality of LEDs in an LED illumination device.

Measurement of color temperature of LED devices

Claim 3*. The LED based illumination device of Claim 1, wherein the <u>first</u> wavelength converting material is YAG.

Wavelength converting material: YAG

^{*}Note: These are hypothetical claims, they were not actual claims from the previously mentioned application.

NPL search: Standard method of testing

Search string for internet search engine: "ASTM or ANSI or SEMI standards for LED color temperature measurements"

[PDF] LED Color Characteristics

https://www.energy.gov/sites/prod/files/2016/.../led-color-characteristics-factsheet.pdf ▼

Solid-State Lighting Technology Fact Sheet

Google: ASTM or ANSI or SEMI standards for LED color temperature measurements

LED Color Characteristics

Color quality is an important consideration when evaluating lighting products. This fact sheet reviews the fundamentals regarding light and color, summarizing the most important color issues related to white-light LED systems, including color consistency, stability, tuning, and rendering, as well as chromaticity.

LED Emission Attributes

Individual LED dies, often referred to as chips, emit light in

Chemical structure search: Search strategy formulation

- Concept to be searched: "Wavelength converting material is YAG"
- Claim does not define "YAG"; consult specification to identify its meaning:

[0043] By way of example, phosphors may be chosen from the set denoted by the following chemical formulas: Y3Al5O12:Ce, (also known as YAG:Ce, or simply YAG)

- Information provided by specification: "phosphor" and "wavelength converting material" are synonyms
- Internet search determines YAG stands for Yttrium Aluminum Garnet

Chemical structure search: Example of search query and results

Search query for chemical name:

"LED devices containing Yttrium Aluminum Garnet"

Search Results:

Candidates Selected (ID 2)

2338 references were found containing the two concepts "LED devices" and "yttrium aluminum garnet" closely associated with one another.

Reference excerpt:

Ce-doped Al₂O₃–YAG (Y₃Al₅O₁₂, <u>yttrium aluminum garnet</u>) eutectic, a resinfree phosphor for white <u>light emitting diodes</u> (WLEDs), was successfully grown by the Czochralski method. X-ray diffraction and scanning electron microscopy show that this material has a typical eutectic structure of interpenetrating sapphire and <u>garnet</u> phases, as well as lamellar spacing in the order of tens of microns. The eutectic has a higher Ce³⁺ segregation coefficient than YAG single crystal. The photoluminescence properties of this eutectic were also investigated. Results show that it is characterized by a wide excitation band, and that the...

Questions and Comments

Jessica Manno
Supervisory Patent Examiner AU 2828
(571) 272-2339
Jessica.Manno@USPTO.GOV

