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1. Introduction

The supplement describes the data and empirical methods used in USPTO IP Data Highlight
Number 6, “Where are U.S. women patentees? Assessing three decades of growth.” The report
documents where women are participating as inventor-patentees across U.S. counties and
explores some of the county-level factors correlated with their participation. We present the
supplemental material in three sections: (1) we describe the data sources and variable
construction; (2) we describe our estimation methods; and (3) we discuss results and their
implications.

2. Data

We combine four sources to form the main dataset used in the analysis. The first source is USPTO's
PatentsView (PV) data spanning years 1990-2019. PV contains information on the gender of
inventor-patentees, their locations, the number of inventors per granted patent, and the
Cooperative Patent Classification (CPC) that denotes the technologly field of a patent.” From the
Bureau of Labor Statistics (BLS), Local Area Unemployment Statistics Program, we obtain county-
level employment data. The third source, the Bureau of Economic Analysis (BEA), provides county-
level income data. The final source is the Census Decennial data and 5-year American Community
Survey (ACS).

For our analysis, we use per capita income from BEA and labor force data from BLS. We draw on
Census and ACS to construct the metrics for educational attainment by county and year. Last, we
use PV to construct all other variables: team size, number of all male teams, and the dependent
variable (described below). Table 1 displays comparative statistics for all variables in our analysis.
We group the statistics by counties with and without women inventors.

We create the dependent variable—number of women inventors—from PatentsView by summing
over the number of unique female inventors within each county-year combination.? Importantly,
we take advantage of the inventor disambiguation (or name harmonization) algorithm provided
by PatentsView, which assigns unique inventor IDs, making it possible to identify unique men and
women inventor names on patents over time.?

We generate variables that capture the volume of patents by technology for each county and
year. These variables are in Table 1 under ‘CPC technology shares’.# They tell us the intensity of

T See www.PatentsView.org.

2|n situations where more than one addresswith different counties was listed on a patent, we assigned women
inventors to both counties.

3 See https://patentsview.org/disambiguation for thorough documentation of the disambiguation process.

4The USPTO classifies patentsintoatleast one technical area using the Cooperative Patent Classification (CPC)
system. Within in the CPC system, there are eight top-level sections corresponding to the International Patent
Classification (IPC), plus a “Y" section to tag emerging and cross-referenced technologies. (Note: Y classified patents
are excluded in this analysis.) Each patentis assigned to a classification that best captures the inventionas a whole for
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patenting activity for each technology field and how this might differ in the presence of women
inventor-patentees. Specifically, these variables measure the percentage of patents granted in
each year and county for each of the eight CPC sections, giving us an average county portfolio of
patenting by technology field.> For example, Table 1 (left side) indicates that for counties with no
women patentees, only 11% of patents are in physics. Contrast this with the right side of Table 1,
which indicates that 17% of patents are in physics when women patentees are present in the
county. This 6-percentage point spread, together with the results from figure 3 in the main report,
shows that there is more patenting in physics when women are present, which is surprisingly
unique among technology fields.

We also construct indicator variables for each of the eight CPC sections, presented as '‘CPC
technology indicators’ in Table 1, to illustrate the scope of counties participating in each
technology field. The indicators tell us whether a certain technology field is concentrated in a few
counties or if technology development is geographically dispersed. We assign a value of one to a
county-year observation if at least one granted patent in that county-year fell into one of the eight
CPC sections. For example, the textiles; paper technology field is the most concentrated. We find
only 5% of counties with no women patentees produce textiles; paper patents, whereas 28% of
counties with women patentees have patents in this field. Contrast this with human necessities, in
which 46% and 86% of county-years have at least one patent in this field in counties without and
with women patentees, respectively, indicating wider dispersion among counties.

To develop the education variables, we combine Census decennial data and 5-Year ACS estimates.
For the intervening 9-year period between census data for which we do not have education
estimates (i.e, 1991-1999), we linearly interpolate to infer educational attainment values between
census years 1990 and 2000. Starting in 2005, Census changed their decennial data collection
process by replacing it with the ACS. ACS data collection occurs every 5 years. We linearly
interpolate to calculate education values for years 2001-2004. For years 2005 and onward, we
apply 5-year ACS values. Census publishes a new 5-year ACS dataset annually. Following guidance
from Census concerning overlapping 5-year estimates, we use stepwise construction for years
2005-2019.% For example, the value from the 2005-2009 ACS education estimates repeats for years
2005 to 2009.

3. Methods

Our analysis uses a zero-inflated negative binomial (zinb) model to assess how county-level
economic factors might influence women inventor-patentees, controlling for a number of
potential confounders such as the patent technology, time, U.S. states, and patent teams. The
model further distinguishes differences in how higher levels of education influence the probability

the patent family; this classificationis designated as the "CPC First” classification.See
www.uspto.gov/web/patents/classification/cpc/html/cpc.html.

> Note, the cpc technology shares sumto 100% in each county.

6 See https://www.census.gov/programs-surveys/acs/guidance/estimates.html.
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that a U.S. county has its first woman inventor-patentee, controlling for time and U.S. states. One
advantage of the zinb model is that it accommodates a data generating process that produces
excessive zeros (Lambert, 1992; Lord et al., 2004; Raihan et al., 2019). This is particularly applicable
to our analysis as the majority of U.S. counties in our sample do not have any women inventors.
(Note the swaths of grey counties in Figures 1a and 1b of the report.)

The zinb model assumes two different processes that could result in a county not having a women
inventor: (1) counties may not have an environment conducive to women inventors, and thus are
defined as structurally zero-women inventor counties; and, (2) an innovation ecosystem s present,
but no women inventors have applied for and received a patent in a given year.

To accommodate the two zero-county processes, the zinb model uses a logistic function to
estimate how higher education affects the likelihood that a county has no women inventor-
patentees. In doing so, the model separates zero-counties into structural zero-women inventor
counties (process (1)) and observational zero-counties (process (2)). The observational zero-
counties combine with non-zero counties, and a negative binomial function estimates how
economic factors and other controls influence the number of women inventors in these counties.

A feature of having many zeros in the data is that it can result in overdispersion of the dependent
variable. Overdispersion occurs when the variance of the dependent variable exceeds its mean.
The zinb model accounts for this by parametrizing the dispersion. In the event that the data are
not overdispersed, a zero-inflated Poisson (zip) model that assumes a Poisson distribution for the
number of women inventor-patentees is most efficient (Cameron and Trivedi, 2005). We test the
women inventor data for overdispersion in four ways: (1) we calculate whether the mean-to-
variance ratio of the dependent variable is greater than unity, (2) we test the statistical significance
of the overdispersion parameter alpha (@) and log(a), (3) we adopt a likelihood ratio test to
assess the goodness of fit between the zip and zinb models, and (4) we calculate Akaike's
information criterion (AIC) and Bayesian information criterion (BIC) to compare maximum
likelihood models. All four methods confirm overdispersion and support the zinb model.”

7 For (1), wereport a mean-to-variance ratio of 7.4, which is largerthan 1. For (2), our model reports an a=0.4and log
o = -0.86 (if there was no dispersion, a = 0 and log(a)= -), both have a p-value of 0.000. For (3), we perform the
likelihood ratio test where the null hypothesisis a = 0. Our y*= 1.5e+05 and is statistically significant at the 99.9% level;
thus, we reject the null hypothesis. Finally (4), we calculate AIC and BIC for both models:

Model AIC BIC
Zinb 182,931.5 184,735.6
Zip 328,448.6 330,243.6

Both AIC and BIC are smaller for the zinb model, thus concludingthat the zinb model is appropriate.
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Table 1. Summary statistics comparing counties with and without women inventors

Counties with women inventors = 0

Std.
N Mean Dev. Min Max

Number of women inventors - - - - - 29,801 15 67 1 2,956
Labor force 34,145 16,481 16,508 261 416,540 | 29,801 120,298 250,215 460 5,121,584
Per capita income ($) 34,145 27,615 10,474 7,096 175998 | 29,801 33,672 13,570 9,798 230,141
Team ssize 34,145 2 1 1 17 29,801 3 1 1 23
Number of all male teams 34,145 5 8 0 225 29,801 149 578 0 21,415
CPC technology shares

Human necessities 34,145  23% 33% 0% 100% | 29,801 22% 21% 0% 100%

Performing operations;

transporting 34,145 26% 34% 0% 100% | 29,801 20% 18% 0% 100%

Chemistry; metallurgy 34,145 8% 21% 0% 100% | 29,801 12% 15% 0% 100%

Textiles; paper 34,145 2% 10% 0% 100% | 29,801 1% 6% 0% 100%

Fixed constructions 34,145 9% 22% 0% 100% | 29,801 5% 11% 0% 100%

Mechanical engineering; lighting;

heating; weapons; blasting

engines or pumps 34,145 13% 26% 0% 100% | 29,801 10% 14% 0% 100%

Physics 34145 11% 24% 0% 100% | 29,801 17% 16% 0% 100%

Electricity 34,145 9% 21% 0% 100% | 29,801 13% 15% 0% 100%

Counties with women inventors > 0




Table 1. Summary statistics comparing counties with and without women inventors, cont'd

Counties with women inventors = 0 Counties with women inventors > 0

Std.
N Mean Dev. Min Max

CPC technology indicators

Human necessities 34,145  46% 50% 0% 100% | 29,801 85% 35% 0% 100%
Performing operations;

transporting 34,145 51% 50% 0% 100% | 29,801 84% 36% 0% 100%
Chemistry; metallurgy 34,145 20% 40% 0% 100% | 29,801 68% 47% 0% 100%
Textiles; paper 34,145 5% 21% 0% 100% | 29,801 28% 45% 0% 100%
Fixed constructions 34,145 22% 41% 0% 100% | 29,801 58% 49% 0% 100%

Mechanical engineering; lighting;
heating; weapons; blasting

engines or pumps 34,145  31% 46% 0% 100% | 29,801 71% 45% 0% 100%
Physics 34,145 30% 46% 0% 100% | 29,801 76% 43% 0% 100%
Electricity 34,145 23% 42% 0% 100% | 29,801 69% 46% 0% 100%

Number of women with...

Bachelor's degrees 34,145 1,310 1,572 17 33,362 | 29,801 14,556 33,026 34 761,572
Master's degrees 34,145 521 664 0 22,797 | 29,801 6,252 14,227 3 287,419
PhDs 34,145 42 70 0 1,483 | 29,801 700 1,854 0 40,577

Note: N is the number of observations, Mean is the sample average, Std. Dev. is the standard deviation, Min is the sample minimum, and Max is
the sample maximum. Labor force, team size and number of all male teams are specified in counts.



3.7 Empirical Model
We allow counts of women inventors (y) in county i to be distributed,
yi~Poisson(u;), (D

where u; = exp(X;B+ v;) is themean woman inventor frequency, and e"i~Gamma G a)(Stata,
2019, p.1635). Equation (1) explains counts of women inventor-patentees by a vector of
independent variables (X), estimable parameters (B), an unobserved error (v;), and the
overdispersion parameter a. When a =1, y is Poisson distributed and the zip model is most
efficient. When o > 1, yis distributed by a negative binomial process and the zinb model is more
appropriate.

There are three elements to the zinb model. The first is a probability density function of observing
county { with zero women inventors (y):

Pr(y; =0)=F,+(1—-F)f(y;=0) (2)

(Stata, 2019, p.1635, 2859; Raihan et al,, 2019). Note that equation (2) models the probability of
not observing a woman inventor-patentee, which is critical when interpreting the results. Also,
there are two terms in equation (2), indicating two possible explanations for observing a county
with zero women inventors. The first term, F;, is the probability of observing a structural-zero

county, which follows a logistic distribution function where F; = % and A; = exp(Z;A). Recall that

structural-zero counties are those that never had a woman inventor. The second term in (2),
(1-F)f(y;=0), follows a negative binomial distribution of women inventors. These counties
have observed women inventor-patentees. Some of these counties, however, do not consistently
have women inventor-patentees every year. Hence, they are termed observational-zero counties.

Once the model determines that a county had or currently has women inventors who patent, a
second probability density function calculates the probability of observing the number of such
women in non-structural zero counties, given by,

Pr(y; > 0) = (1 — F)f(vo). (3)

Importantly, equation (3) contains the third element of the zinb model, link function f(y;). The
link function provides the functional form of the nested distribution as a function of the mean (u)
and overdispersion () parameters. The model estimates y and o by a regression that assumes a
negative binomial distribution, T'(.). The link function is given by,

Y= — vy q) = L0 meq o i
wherem = 1/a and p; = 1/(1 + ay;). Substituting (4) into (2) and (3), adding (2) and (3) together,
and taking logs forms the following log-likelihood function:
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—I(y; + 1) — T(m) + minp; + y,(1 — p,)}. (5)

The zinb model in equation (5) estimates simultaneously the probabilities given in (2) and (3)in a
single log-likelihood function, nesting the negative binomial distribution of non-zero counties,
I'(.), inside the logistic distribution, F;. The index term S in the summations of equation (5)
identifies the set of counties that do not havewomen inventors (y;; = 0), and w; are weights (Stata
2019, p.2859).

3.2 Empirical Application

We first explore how women's educational attainment in a county affects the probability that a
county has its first women inventor-patentee. Specifically, we test three categories of female
educational attainment: number of women with bachelor’s degrees (bachelors), master's degrees
(masters), and PhDs (phd). We expect that education has a positive and increasing influence on
the likelihood of a county having a women inventor-patentee.

We specify the logistic distribution function shown in equation (2) to account for time (1990-
2019):

Ait = exp(zitﬂ) = eXp(Z{tja) = exp (60 + GfbachelorsfbaChEIOTSit + 5fmastersfma5tersit
+5fphdfphdit + StYQQTFEt + é'IStateFE;), (6}

where subscript i refers to counties, t refers to time, subscripts j = bachelors, masters and phd and
[=1,..,517 for all U.S. states plus the District of Columbia. Equation (6) tests whether educational
attainment influences the likelihood of a county not having a woman inventor-patentee after
accounting for time-invariant heterogeneity at the state level (StateFE), as well as common shocks
to all U.S. counties in a given year (YearFE). States vary in their policies to incentivize business
investment, which we hypothesize contributes to the participation by women in the innovation
ecosystem.® The model includes intercept term (8,) and robust standard errors at the county level.

For non-zero counties, we specify two equations to investigate different facets of a county’s
economic environment. To that end, we specify

8 We run a Wald test to determine the joint significance of state fixed effects (FEs). The null hypothesis, Ho, assumes
thatall state FEs are simultaneously equal to zero. The resulting Wald test gives us a chi-squared value of 3164.76
with 100 degrees of freedom (state FEs appear twice in the model: firstin the logit and again in the negative binomial
estimation) with p-value of 0.000. As a result, we reject the null hypothesis as the coefficients are not simultaneously
equal to zero. Thus, including state FEs results in a statistically significant improvement in the model fit.
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uir = exp (X;B) = exp (xgtjﬁ = Po + BreLFit + BpciPClir + (BrsTSic+ 5T_s2TSi2t ) + BamAM;; +
ﬁ%cpc%cpcit + ﬁdcpcdcpcit + BYeary + BstateStater) (7)

where subscript ( refers to counties, t refers to time (1990-2019), andj = Labor force counts (LF),
Per-capita Income (PCl), inventor team size (TS), all male inventor teams (AM), technology field
shares (%cpc) and presence of a technology field (dcpc). To control for unobserved heterogeneity,
we include year and (=1,...,51 state fixed effects. We include robust standard errors to account for
heteroskedasticity and serial correlation. Equation (7) uncovers systematic empirical relationships
between a given county’s labor force, per capita GDP, and its number of women inventors,
controlling for other important factors.

We estimate equations (6) and (7) simultaneously using the log-likelihood function specified by
(5) and the STATA package zinb.

4. Discussion

Table 2 provides selected results from the zinb econometric regression.®

[ Toble 2 Selected zinbregressionresuts |

Variable IRR* p-value
Negative Binomal

Economic variables
Labor force 1.000002 0.00
Per capita income (USD) 1.000019 0.00

Logit

Bachelors 0.999537 0.01
Masters 0.999231 0.07
PhD 0.995192 0.00

*Note: incidence-rate ratios (IRR) are equal to the
exponentiated beta coefficient.

Results from the logit model indicate that both the number of women with bachelors and those
with PhDs in a given county are statistically significant correlates.’® An increase in each reduces
the probability that a county remains structurally zero with no women inventor-patentees. In other
words, the presence of highly educated women in a county increases the probability of that county
having its first woman inventor-patentee. Doubling the number of women college graduates in a
county that never had a woman patentee correlates with increasing a county’s likelihood of having
its first woman inventor-patentee by 61% = (1,310*(1-0.999537)). Note that 1,310 reflects the

9 The full set of parameter estimates are available upon request.
9 The parameter estimate of the Masters variable is only statistically significant at the 10% level.
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county mean of women with a Bachelor's degree. Doubling the number of women with PhDs
increases the likelihood of a county having its first woman inventor-patentee by 20% = (42*(1-
0.995192). Again, 42 reflects the county mean of women with a PhD. Though the total effect of
adding PhDs is smaller, at the margin it is ten times greater, (1- 0.995192) / (1-0.999537) = 10;
that is, adding one additional woman with a PhD to a county has the same effect as adding ten
women with bachelors’ degrees.

Though these numbers are in the expected direction, the magnitude of these effects suggests that
educational attainmentis a small factor in determining whether a county is observed as a zero-
women inventor-patentee county. The results allude to the likelihood that other factors (e.g.,
working conditions) play a larger part in ensuring that a county has women inventors.

Movingto the negative binomial results in the upper portion of Table 2, labor force and per capita
income correlate with the number of women inventors in the expected direction. Counties with
relatively large labor forces and high per capita income also tend to have more women inventors.
The magnitude of these effects is statistically significant but economically small. While this opens
the door to explore other factors that contribute to the proliferation of women inventor-
patentees, a possible culprit for the small marginal effects is that the employment and wage data
are aggregated across all employment fields, including those not typically associated with
patenting. For example, the data groups the 'Professional, Scientific, and Technical Services' sector
(NAICS 54) — which includes jobs that are more likely associated with patentees (e.g., computer
and math occupations) — with jobs not associated with patenting, such as legal occupations. The
lack of disaggregated employment data likely resultsin the underestimation of income and labor-
force effects on the abundance of women inventors.

In summary, our empirical results corroborate the direction of the relationships of educational
attainment with regard to the probability of a county having women inventor-patentees, and
income and labor force with respect to the number of women inventor-patentees. The fact that
the magnitudes of our results were small indicates that other factors likely contribute to women's
participation, and that future studies will need disaggregated employment data to more precisely
determine the relationship between labor factors and women inventors.
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